CLSI Guidelines on Epidemiological Cutoff Values

Shawn Lockhart, PhD D(ABMM)
Mycotic Diseases Branch
Centers for Disease Control and Prevention
Breakpoints vs Epidemiological Cutoff Values (ECVs)
Breakpoints

Based upon a number of factors:

- MIC distributions (species specific)
 - Including both wild type and molecularly proven resistant isolates
- Pharmacokinetics/Pharmacodynamics
- Outcome data

Allow us to determine whether a given bug/drug combination is likely to work
Epidemiological Cutoff Values (ECVs)

- Based upon the MIC distribution alone
- Do not allow us to determine whether a given bug/drug combination is likely to work only whether a particular MIC value is “normal” (wild type) or “not normal” (non-wild type)
What is an ECV?

- CLSI working definition-
 - the minimal inhibitory concentration/minimal effective concentration value that separates fungal populations into those with and without acquired and/or mutational resistance based on their phenotypes (minimal inhibitory concentration)
Phenotype as a definition of wild type…

- We make an assumption of wild type based on MIC

- Wild type is determined based on the MIC value to the specific drug
 - A *Candida albicans* isolate with an FKS mutation and a micafungin MIC of 4 µg/ml would be non-wild type for micafungin
 - The same isolate, with a fluconazole MIC of 0.125 µg/ml would be considered wild type for fluconazole
How are ECVs determined?

- Visual method
- 95% rule
- Normalized resistance interpretation
- Multimodal analysis
- Iterative statistical method
How are ECVs determined?

- Visual method
 - View the distribution histogram
 - Look for the population at the lower end of the distribution
How are ECVs determined?

Candida albicans and fluconazole MIC distribution

5,265 isolates
How are ECVs determined?

- 95% rule
 - This is essentially an MIC$_{95}$
 - The ECV is the MIC the encompasses $\geq 95\%$ of the wild type population
How are ECVs determined?

Candida albicans and fluconazole MIC distribution

5,265 isolates
How are ECVs determined?

- Iterative statistical method
 - This method utilizes a program that models the log-transformed MICs at the lower end of the distribution and calculates the mean and standard deviation of the modeled distribution
 - The ECV is the MIC that captures ≥97.5% of the modeled distribution
 - Allows an ECV to be determined even with a population with many non-wild type isolates

How are ECVs determined?

Candida albicans and fluconazole MIC distribution

Encompasses ≥ 97.5% of wild type population

Rules for establishing an ECV

- Species identification must be molecular (for molds and yeasts) or MALDI-TOF (for yeasts)
- The data must be generated by a minimum of 3 different laboratories
 - There is a method for weighing the data if a preponderance comes from one laboratory
- More than 100 independent isolates must be tested
Do ECVs identify non-wild type isolates?

C. glabrata micafungin MIC distribution

- **Number of isolates**: 1,380
- **ECV**: Red arrow indicates a significant increase in the number of isolates at a specific MIC level.
Do ECVs identify non-wild type isolates?

C. glabrata micafungin MIC distribution

Number of isolates

MIC in µg/ml

0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8

Wild type
FKS mutations

ECV
Do ECVs identify non-wild type isolates?

C. glabrata micafungin MIC distribution

<table>
<thead>
<tr>
<th>MIC in µg/ml</th>
<th>Wild type</th>
<th>FKS mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>0.06</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>0.12</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>0.25</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>0.5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Do ECVs identify non-wild type isolates?

A. fumigatus itraconazole MIC distribution

Jacques Meis, personal communication
Do ECVs identify non-wild type isolates?

A. fumigatus voriconazole MIC distribution

- No mutation
- TR34/L98H

Jacques Meis, personal communication
Published ECVs vs CLSI breakpoints

<table>
<thead>
<tr>
<th>Species</th>
<th>ECV µg/ml</th>
<th>Breakpoint (S) µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0.03</td>
<td>0.25</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C. krusei</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>0.06</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Some final thoughts…

- ECVs will only be established for species and antifungal combinations for which there is thought to be clinical efficacy
 - For example, no ECVs for *Cryptococcus* and echincandins

- ECVs can be established for any species as long as there are enough isolates too test
Some final thoughts…

- ECVs may promote more susceptibility testing because they will allow MIC values to be put into context
 - Right now, too many times we have to say “We can test that, but we won’t know what the numbers mean”
Acknowledgements

MDB Staff

Ana Espinel-Ingroff
Mahmoud Ghanoum
John Turnidge
Maiken Arendrup
Mary Motyl

Clinical and Laboratory Standards Institute
CLSI Antifungal Susceptibility Subcommittee

The views and conclusions of this talk are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention.