THE BURDEN OF FUNGAL KERATITIS IN INDIA

Philip A. Thomas MD, PhD
Associate Director (Research) &
Professor of Microbiology
Institute of Ophthalmology
Joseph Eye Hospital
Tiruchirapalli 620001
Tamilnadu, INDIA
THE BURDEN OF FUNGAL KERATITIS IN INDIA

KERATITIS
- Cornea is the outermost projecting part of eyeball
- Transparent
- Break in corneal epithelium
- Inflammation of the underlying corneal stroma

ENDOPHTHALMITIS
- Infection of posterior segment of eyeball
- Vitreous humour is infected
- Retina & choroid also infected

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS
IN INDIA

Medical emergency

Patients suffer from significant pain & distress

Rapid initiation of aggressive treatment is needed to halt the disease process

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
Multi-center, population-based cross-sectional study
8 months 2010; 168,673 individuals of all age groups participated.
Prevalence of past and active infectious keratitis = 0.19 %
Prevalence of viral, bacterial, & fungal keratitis = 0.11%, 0.075%, and 0.007%, respectively.
138 cases of infectious corneal blindness in at least one eye in the study population (prevalence of 0.082 %)
Risk factors identified for infectious corneal blindness (based on statistical analysis):
--- ocular trauma
--- alcoholic consumption
--- low socioeconomic levels
--- advanced age & poor education

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
-- Preventable corneal disease, glaucoma, complications of cataract surgery & amblyopia caused 19% of overall blindness

In Andhra Pradesh Dandona & Dandona, Br J Ophthalmol 2003; 87: 133
-- Corneal blindness if an eye had v/a < 20/200 due to a corneal disease
-- Corneal blindness in at least one eye in 86 of 10,293 (prevalence 0.66% [0.1% bilateral; 0.56% unilateral])
-- Major causes of keratitis during childhood (36.7%), trauma (28.6%) & keratitis during adulthood (17.7%)
-- Nearly 95% of all corneal blindness was avoidable
-- Prevalence significantly higher with ↓ socioeconomic status and ↑ age

-- Success of strategies to prevent 90% of preventable blindness due to corneal disease & glaucoma by 2020 would prevent 3.6 million blind persons in 2020 & 29 million blind person-years.

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Gonzales et al. Ophthalmic Epidemiol 1996; 3:159

- Retrospective, incidence, general community-based study in 1993 in Madurai district

1148 episodes of corneal ulceration noted in medical records = Incidence of 34 / 100,000 / year

Episodes of corneal ulceration seen but not recorded = Corrected incidence of 113 / 100,000 / year.

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

- Corneal ulceration in the developing world: a silent epidemic
- More frequent in developing countries than previously recognised

EPIDEMIC PROPORTIONS

<table>
<thead>
<tr>
<th>Region</th>
<th>New Cases / Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madurai District</td>
<td>50,000</td>
</tr>
<tr>
<td>Whole of India</td>
<td>840,000</td>
</tr>
<tr>
<td>Developing world</td>
<td>> 1,500,000</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>27,000</td>
</tr>
</tbody>
</table>

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

- Prevalence: unknown
- Incidence

Tuft and Tullo, Eye (Lond.) 2009; 23: 1308
-- 0.32 cases per million population/ year
-- 39 cases over 3 years

- Incidence of infectious keratitis (per 100,000 /year)

--- Hong Kong : 6.3 Lam et al., Eye 2002; 16 : 608
--- USA : 11.0 Erie et al., Arch Ophthalmol 1993; 111: 1165
--- Bhutan : 339.0 WHO, SEA Ophthal, 126 ,2004; 1
--- Myanmar : 710.0 WHO, SEA Ophthal, 126, 2004; 1

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA
Suppurative keratitis due to fungi as a proportion of total number of cases, by latitude.

©2002 by BMJ Publishing Group Ltd.

1 Madras, S India (n = 150)
2 Madurai, S India (n = 434)
3 Ghana, W Africa (n = 199)
4 Sri Lanka (n = 66)
5 Trichy, S India (n = 774)
6 Thailand (n = 145)
7 Tanzania (n = 212)
8 Hyderabad, India (n = 102)
9 Bangladesh (n = 66)
10 Dharan, Nepal (n = 86)
11 South Florida (n = 663)
12 New Delhi, India (n = 674)
13 Hong Kong (n = 223)
14 Chandigarh, N India (n = 730)
15 Kathmandu, Nepal (n = 405)
16 Karnataka, S India (n = 295)
17 London, UK (n = 72)
18 Sweden (n = 48)
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Leck et al., Br J Ophthalmol 2002; 86: 1211

- 39 studies (1976 to 2001)
- 23 from Asia (India 12, Bangladesh 4, Nepal 3, Sri Lanka, Thailand, Hong Kong, Singapore)
 - 7 from North America (all USA)
 - 6 from Africa & Mid East (South Africa (2), Nigeria, Tanzania, Ghana, KSA)
 - 2 from Europe (London) 1 from South America (Paraguay)

- 2% to 58%
- Principal fungal isolates
 - Aspergillus spp.-- 17 ; Fusarium spp.-- 12 ; Candida spp. -- 5

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

- Shah et al., Br J Ophthalmol 2011; 95: 762

Highest % of bacterial corneal ulcers -- from North America, Australia, Netherlands, Singapore

Highest % of fungal corneal ulcers – India, Nepal

- statistically significant coefficient correlations between gross national income and percentages of:
 -- bacterial K (0.85 [95% CI 0.68 to 0.91]) &
 -- FUNGAL KERATITIS (-0.81 [95% CI -0.9 to -0.66])

Mycotic cause in 1.2 % to 62 % of Inf. keratitis

 Ritterband et al., Cornea 2006; 25: 264
 Xie et al., Ophthalmology 2006; 113: 1943
 Nath et al., Indian J Ophthalmol 2011; 59:267

 Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

- retrospective study of antifungal eye drops sales from only authorised pharmaceutical ophthalmologic laboratory in Brazil (6 years)
- 26,087 antifungal eye drop units sold (mean = 2.3 / patient).
- Significant variation in antifungal sales during the year.
- By linear regression a significant association between reduced relative humidity & antifungal drug sales (R2 = 0.17, p<0.01).

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Absolute numbers

-- ~ 340 cases/ year - single centre (southern India)

-- ~ 200 cases/ year - single centre (central China)

-- ~ 100 cases/ year - single centre
 Xie et al., Ophthalmology 2006; 113: 1943
 Nath et al., Indian J Ophthalmol 2011; 59:267
 Sengupta et al., Indian J Ophthalmol 2011; 59:291

-- ~ 100 cases/ year - 11 centres (USA)
 Keay et al. Ophthalmology 2011; 118; 920

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

- >50% of oculomycoses Srinivasan et al., Acta Ophthalmol 1991; 69: 744

- 2 distinct forms due to:
 --filamentous fungi
 --yeasts & yeast-like fungi

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA
Aetiological Agents of Filamentous FUNGAL KERATITIS

Aspergillus Curvularia Scedosporium

Fusarium Bipolaris Lasiodiplodia

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA
Aetiological Agents of Filamentous FUNGAL KERATITIS

Auerswaldia lignicola

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli

Auerswaldia lignicola

Colletotrichum dematium

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS
IN INDIA

Filamentous FUNGAL KERATITIS

- Increased frequency towards tropical latitudes (wind, temperature, rainfall)
 Leck et al., *Br J Ophthalmol* 2002; 86: 1211

- Increased *Curvularia* keratitis during hot moister summer months along Gulf of Mexico

- Tends to occur more frequently in adults & elderly than in children (<16 yr)
 Parmar et al., *Cornea* 2006; 25: 264

- Occupation-related
 Gopinathan et al., *Cornea* 2002; 21: 555

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
Saad-Hussein et al., East Mediterr Health J 2011; 17: 468

- Statistically significant ↑ in relative frequency of FK (1997-2007) in greater Cairo area

- Rise correlated significantly with
 - ↑ minimum temperature
 - ↑ maximum atmospheric humidity
 - ↑ in CO₂ emissions & surface temperature

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA
Filamentous FUNGAL KERATITIS

Seasonal occurrence

- During paddy harvesting in Assam (Jan & Feb) Nath et al. 2011
- Fungi cultured significantly more frequently during summer months (Australia) Green et al. Cornea 2008; 27:33
- Incidence of FUNGAL KERATITIS higher between June & Sept (southern India). Bharathi et al. Ophthalmic Epidemiol 2007; 14:61
- Highest during harvest seasons, including summer and autumn (northern China). Xie et al. Ophthalmology 2006; 113: 1943

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Risk factors for filamentous FUNGAL KERATITIS

- Injury caused by plants show a 3.8 fold greater chance of positive fungal culture. Cariello et al. Int Ophthalmol 2011; 31: 197

- Corticosteroids (Stern & Buttross, Ophthalmology 1991; 98:847)

- ‘allergic’ conjunctivitis

- ? traditional eye medicines

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Predisposing factors

TOTAL NO. OF CASES = 515.

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Risk factors for filamentous FUNGAL KERATITIS

- **Fungal**
 - Veg. Matter: 28
 - Mud: 47
- **Bacterial**
 - Veg. Matter: 28
 - Mud: 15

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Injury by needle

foreign body in the cornea

Welding spark

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli

Courtesy J. KALIAMURTHY
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Courtesy J. KALIAMURTHY

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Hydrophilic contact lenses
Liesegang, Cornea 1997; 16: 125, 265

Contact lens cleaning solution
(ReNu with MoistureLoc - Bausch & Lomb, Rochester, NY)
--- Singapore, Hong Kong, USA, West Indies

--- withdrawal controlled the outbreak
Khor et al., JAMA 2006; 295: 2867
Chang et al., JAMA 2006; 296: 953

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Keratitis due to yeasts and yeast like fungi

- *Candida albicans*

- No geographic localization, exogenous
 - Ocular (tears, eyelid closure)
 - Systemic (diabetes mellitus, immunosuppression)

- Pre-existing corneal lesions
 - Herpes keratitis, contact lens-associated keratitis

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

- Tried to detect fungal hyphae in corneal scraping material by a cost-effective assembly of smartphone & pocket magnifier.
- A tissue sample was obtained by conventional corneal scraping from a clinically suspicious case of fungal keratitis.
- Smear stained by Gram stain; a 10% potassium hydroxide mount also prepared.
- Slides imaged by a smartphone coupled with a compact pocket magnifier & integrated light-emitting diode assembly at point-of-care.
- Photographs of multiple sections of slides were viewed using smartphone screen & pinch-to-zoom function. Same slides subsequently screened under a light microscope by experienced microbiologist.
- The scraping from the ulcer also cultured
- Smartphone-based digital imaging revealed gram-positive organisms with hyphae. Examination under a light microscope also yielded similar findings.
- Fusarium cultured from the corneal scraping, confirming the diagnosis of fungal keratitis.

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Laboratory Diagnosis of FUNGAL KERATITIS

- Corneal scrapes
 - Edges
 - Base
- Corneal biopsy
 - Lamellar
 - Formal
- Anterior chamber

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Laboratory Diagnosis: Direct Microscopy

- **Wet Mounts**
 - KOH, ink KOH, KOH-DMSO+AO
 Gopinathan et al., Cornea 2002; 21: 555
 - LPCB
 Thomas et al., Diagn Microbiol Infect Dis 1991; 14:219

- **Stained smears**
 - Gram
 Gopinathan et al., Cornea 2002; 21: 555
 - Giemsa

- **Special stains**
 - GMS, PAS
 Gopinathan et al., Cornea 2002; 21: 555
 - AO, CFW

- **Lectins**
 - FC, EC
 Robin et al., Am J Ophthalmol 1986; 102: 797
 Garcia et al., Mol Vis 2002; 8: 10

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA: LABORATORY DIAGNOSIS

- Calcofluor white
- Lactophenol cotton blue
- Gram stain
- Methenamine silver stain

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA: CULTURE

Solid media

- Sheep blood agar
- Cystine tryptone agar
- Sabouraud agar
- Rose Bengal agar

Antibacterial added to media

Liquid media

- Brain heart infusion broth
- Thioglycollate

Incubation Temperature: 22°C, 30-35°C

Duration of Incubation

Controls

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

DIAGNOSIS ESTABLISHED BY:

■ Fungal hyphae or yeast cells in direct microscopy of LPCB wet films, Gram- or CFW-stained smears

■ Growth of fungi in ‘C’ streaks of at least 2 solid culture media inoculated with corneal scrapes.

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
Fungal Keratitis: Direct microscopic examination

Advantages

• Rapid, relatively inexpensive, relatively easy
• Good sensitivity and specificity for some methods

Disadvantages

Can detect fungi but very difficult to identify the genus and species involved
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Culture

Advantages: a) More sensitive than direct microscopy

b) May sometimes exceed molecular techniques in sensitivity and specificity

c) Organism can be identified & susceptibility testing can be done.

Disadvantage: a) Takes time

b) There may be no growth in culture due to

c) Some amount of expertise needed for proper identification

• Identified Fusarium isolates from ocular infections by morphological methods and by PCR analysis of ITS regions (ITS 1, 5.8 S & ITS2)

• At species level, morphologic classification correlated with genotypic classification in 25% (general ocular microbiology laboratory) and 97% (reference mycology laboratory)

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
Fungal rRNA complex
• Coding regions 18S, 5.8S & 28S nuclear rRNA genes evolved slowly
 -- are relatively conserved among fungi
 -- provide molecular basis of establishing phylogenetic relationships

• Non-coding regions ITS1 and ITS2 evolved more rapidly
 – responsible for sequence variability among fungal genera & species

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Identification of pathogens

Single strand conformation polymorphism (SSCP) analysis after PCR

- Amplified products of target sequence denatured into single-stranded DNA fragments
- Single-stranded fragments subjected to non-denaturing PAGE
- PCR-SSCP can detect > 90% of single-base substitutions in a 200 bp fragment
- Used to diagnose FUNGAL KERATITIS identify the fungal species involved

Kumar and Shukla J Clin Microbiol 2005; 43: 662-668
Kumar and Shukla Diagn Microbiol Infect Dis 2006; 56: 45-51

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
THE BURDEN OF FUNGAL KERATITIS IN INDIA

Identification of pathogens

Nucleic acid sequence analysis after PCR

- Provides most information since size, nucleotide composition and order of nucleotides are considered
- Best method for identification of pathogens since suspicion of aetiological agent is not necessary
- Used to identify the fungus causing MYCOTIC ENDOPHTHALMITIS & THE BURDEN OF FUNGAL KERATITIS IN INDIA

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
1. Suspected ocular fungal infection where fungal species identification is not immediately required

Broad range PCR using universal fungal primers to confirm a fungal aetiology

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
2. Suspected ocular fungal infection where fungal species identification is a crucial need

a) Single step or nested PCR amplification of 18S rRNA or 28S rRNA genes
 ITSs- 5.8S rRNA gene
 ITS2

b) Identification of the amplified product:
 nested PCR, DNA sequencing or SSCP

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
3. Identification of fungal isolate and determination of genetic relatedness to other fungal isolates

Multilocus sequence typing (MLST)
- Used to determine relatedness between isolates causing disease in different patients, hospitals and countries
- Epidemiological association of Fusarium keratitis in 2006 performed by this method

 Chang et al. JAMA 2006; 296: 953-963.

Arbitrarily-primed PCR (AP-PCR)
- useful for determining whether two isolates of the same species are epidemiologically related.
THE BURDEN OF FUNGAL KERATITIS IN INDIA

- Medical emergency
- Frequently occurs as an acute presentation
- Patients in a state of distress due to pain & loss of vision
- Index of suspicion based on demographics and clinical presentation of great importance
 - Fungi may cause 1.2 to > 60 % of infectious keratitis
 - Two important types:
 -- due to filamentous fungi
 -- due to yeast and yeast-like fungi
 - Aspergillus and Fusarium ; Candida albicans

- Laboratory diagnosis (conventional and new modalities) required for confirmation

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli
Prompt diagnosis & identification of the fungal pathogen is of utmost importance.

Direct microscopy is rapid and sensitive but species identification is difficult.

Culture allows species identification and susceptibility testing but is time-consuming.

The polymerase chain reaction permits rapid detection of fungal nucleic acid in corneal scrape material.

The polymerase chain reaction permits accurate species identification—helps treatment.

Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli